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Abstract. We study conjugate duality with arbitrary coupling functions. Our only tool is a certain
support property, which is automatically fulfilled in the two most widely used special cases, nhamely
the case where the underlying space is a topological vector space and the coupling functions are the
continuous linear ones, and the case where the underlying space is a metric space and the coupling
functions are the continuous ones. We obtain thereby a simultaneous axiomatic extension of these
two classical models. Also included is a condition for global optimality, which requires only the
mentioned support property.
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1. Introduction

Fenchel's theory of conjugate convex functions is a classical source of duality
in nonlinear optimization [7, 14, 15]. In Fenchel’s setting, the conjugétef a
function f € « is defined as

f*(c) :==suplc(x) — f(x)) VceC.
xeX
HereX is a locally convex topological vector spacejs the family of all functions
f: X — R U {400} which are proper, convex, and lower semicontinuous,@nd
is the family of all functionsc: X — R which are linear and continuous. We call
this setting ‘case A.

It was soon realized [11] that part of Fenchel's results remains valid in a more
general setting. Of particular interest is the case whgis a metric spaces is
the family of all functionsf: X — R U {400} which are lower semicontinuous,
andg is the family of all functions:: X — R which are continuous [1, 4, 13]. We
call this situation ‘case B’.

Until recently, in studying conjugate duality for case B, it was customary to use
some ad hoc assumptions, not needed for case A, for instance the assumption that
f € Aisbounded from below o by somer € €. This assumption is not needed
for case B, as follows from a classical result of Hahn [9]. To our knowledge, it was
Flores-Bazan [8] who for the first time was able to treat case B without such ad
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hoc assumptions, mainly by reproving Hahn'’s result [8, Lemma 2.9]. Hahn's result
states the following:

If X is a metric spacef: X — R U {400} is lower semicontinuoug,: X —

R U {—o0} is upper semicontinuous, andx) < f(x) for all x € X, then there
exists a continuous: X — R suchthatg(x) < c(x) < f(x) forall x € X.

A self-contained proof can be found in [16, pp. 132—-134]; for possible exten-
sions see [2, 6, p. 61].

In what follows our only structural requirement will be a certain support prop-
erty which is automatically fulfilled in case A as well as in case B, its validity in
case B being a straightforward consequence of Hahn’s result. This support property
is formulated as hypothesis (A) in Section 3 below. We discuss some results of
conjugation, global optimality, and duality, which need only this hypothesis, hence
are valid simultaneously in both settings. In this way we obtain a joint axiomatic
extension of cases A and B.

2. Preliminaries

Let X be a nonempty set. L& be a nonempty family of real-valued functions de-
fined onX. For any functionf: X — R ande > 0 we define the-subdifferential
of fatx € X as

9 f(x):={ceClf(x) —c(x) = f(X) —c(X) —¢ VxeX}

For any functionz: ¢ — R ande > 0 we define thes-subdifferential ofs at
ceCas

9.h(@) = {x € X | h(c) —c(x) > h(@) —c(x) —e Ve Cl.

Foranyf: X — R theconjugatef*: € — R and thebiconjugatef**: X — R
are defined as

7 (©) ==suple(x) — f(x)), f7(x):=supcx) — f(c)).

xeX ceC

We list some properties of the conjugate and biconjugate (see also [11]).

PROPOSITION 1.Let f: X — R be given. The following properties hold:
() foreveryg: X > R, f <g = f*>g" = f™ < g™,
f # 400 = f*(c) #—ooVceC;
(i) f~<f;
(i) for everyx € X, f*(x) = sup(x)|® € ©, 9 < f},* where® :=
{(0: X >R|9=c+r,ceC,relR}
(iv) foreveryx € X andc € C, f(x) + f*(c) = c(x);**

* Here su) := —oo.
** For reasons of symmetry, givenb € R, r € R, we writea +b > r iff a > r — b. The
analogous convention appliesdor- b < r.
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(v) foreveryx € X,c € C, ¢ > 0, there holds
CEXS(X) & f(X)+ () <c(X)+¢& = X €010,
and if f(x) = f**(x), then
fE) + [ <eX) +¢& = X €0:[(0);

(vi) for everyx € X ande > 0, there holdss, f (x) C o, f*(x), and if f(x) =
f*(x), thena, f(x) = 9, f**(X);
(vii) foreveryx € X, if 9, f(x) # @ forall ¢ > 0, then f (x) = f**(x);

(viii) f** = f*.
Proof.
(i) is obvious.

(i) Let x € X. Thenc(x) — f*(c) < f(x) forall c € G, thus f*(x) < f(x).
(i) Let x € X ands :=supv(x) |9 € ©®, ¥ < f}.
First we prove thatf**(x) < s, i.e.,c(x) — f*(c) < s for everyc € C. This
is true if f*(c) = 4o0. If f*(c) € R, lety := ¢ — f*(c). Then?® € ® and,
from the definition of f*, ¢ = ¢ — f*(c¢) < f. Thusc(x) — f*(c) < s. If
f*(c) = —o0, thenf = +o0 and thereforg = +o0.
Next we prove thatf**(x) > s. From the definition of, for every reakx < s
there exist®r < f suchthatr < 9 (x) and® = c+r withc € C,r € R. Then
c— f < —r,thusf*(c) < —r, and thereforexc < c(x) +r < c(x) — f*(c) <
S ).
(iv) Let ¢ € €. From the definition,f*(c) > c(x) — f(x) for everyx € X.
(V) ¢ € 9, f(x) is equivalent witft(x) — f(x) < ¢(X)+¢e— f(x) for everyx € X,
i.e., f*(©) <c(x) +¢&— f(X).
If f(x) <c(X)+e— f*©) holds, thenf*(c) —c(x) > c(x) — f(X) —c(X) =
—f(x) = f*(c) —c(x) — ¢ for everyc € G, thusx € 9, f*(c).
If f(x)= f*()andx € 9, f*(c), thenc(x) — f*(c) < ¢(x) +¢& — f*(c) for
everyc € G, hencef (x) = f*x) <c(x) + & — f*(c).
(vi) Letc¢ € 3, f(x). From (ii) and (v),f*(x) < f(X) < c¢(x) + ¢ — f*(c) holds.
Thus f**(x) —¢(x) > ¢(x) — f*(c) —¢c(x) = —f*(c) = f*(x) —c(x) —¢
for everyx € X, and therefore € 9, f**(x).
If f(x)= f**() andc € a, f**(x), then from (ii) followsc € 3, f (x).
(vii) Let ¢ > 0 and choose € o, f(x). From (v), f(x) < ¢(x) — f*(©) + ¢ <
f*(x) + €. Sincee was arbitrary,f (x) < f**(x) follows.
(viii) From (ii) and (i) we obtainf*** > f*. Letc € C. Thenc(x) — f**(x) < f*(c)
forall x € X, thus f**(c) < f*(c). ]
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3. The basic hypothesis

To proceed further, leX andC be as before. Our only structural tool will be the
following hypothesis (A), which we require to be satisfied for a given function
f: X >R

(A) Foreveryx € X and everyr € Rwitha < f(x) there existg € € such that
f(x) —cx) =a—ck) forall x € X.

We note some simple consequencesf I§£ —oo, then hypothesis (A) implies in
particular thatf (x) > —oo for all x € X and f* # +oo. Indeed, if we choose
a < f(x), then from (A) there exists € € such that(x) — f(x) < ¢(X) — « for
all x € X,thusf*(c) < c¢(x) —a < +o0. Moreover, if f (X) € R, then (A) implies
0. f(xX) # @ forall ¢ > 0; simply chooser := f(x) — ¢ in (A). However, (A) does
not imply 9o f (x) # @.

PROPOSITION 2.Forany f: X — R the validity of hypothesi\) is equivalent
to f = f*.

Proof. Let (A) hold for f. From Proposition 1(ii) we know that** < f. To
prove f (x) < f*(x) for arbitraryx € X, lete € R, « < f(x). Then there exists
¢ € C such that

cx)—a>=clx)— f(x) VxeX,

which impliesc(x) — a > f*(c), and thereforef**(x) > c¢(x) — f*(¢) > «a.
Conversely, iff** = f, then (A) is satisfied. In fact, let < f(x) = f*x).

Then there exists € € such thatx < ¢(X) — f*(¢) < c@) — (c(x) — f(x)) for

all x € X. O

Once itis granted that = f**, the biconjugate is not needed any more for our
purposes. We collect the relevant results as follows.

THEOREM 1. Let f: X — R satisfy(A), and let

f*(c) :=suplc(x) — f(x)) VYcecC.

xeX

Then for every € X,c € G, ¢ > 0,

fx)+ fH(e) = e(x),
c€Xfx) < f(xX)+ f"(c) c(x)+e < x €9, (c),
fx) = SUOFXC(X) — f*(0)).

Proof. This follows from Proposition 1(iv), (v), and Proposition 2. |
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4. Examples

Let us quote two examples for hypothesis (A).

1. Convex conjugatiofFenchel, Moreau, Rockafellar)

Let X be a locally convex topological vector space. Xétdenote the topological
dual of X, i.e., the space of all continuous linear functionals defined<owe
denote the value df € X* atx € X by (&, x) instead o& (x). LetC := X*. In this
setting we have

PROPOSITION 3.Let f: X — R U {400} be proper (i.e. +0o0). Thenf is
convex and lower semicontinuous if, and only if, condifi@hholds.

Proof. If (A) holds, then from Propositions 2 and 1(iii) it follows thdt(x) =
sup?(x) |9 € ®, ¥ < f}. Thusf, being the supremum of a family of continuous
affine functions, is lower semicontinuous and convex.

Conversely, letf be proper, convex, and lower semicontinuous. et X and
aeR o< f(x). Then(x,a) ¢ epif :={(x,r) € X x R| f(x) <r}. Then (see
[5, pp. 14/15]) there exists a nonvertical hyperplane which sepapates from the
closed, convex set efii So there exists € X* suchthaté, x)— f(x) < (£,X)—«
for all x € X. Hence (A) holds. O

f* becomes in this case the Fenchel conjugatg.df f is proper, convex, and
lower semicontinuous, thefi is proper, convex, and wealower semicontinuous.
Compare [3, Chapter I]. Moreover, ff(x) € R, thend, f(x) # @ for all ¢ > 0.
But dg f (x) may be empty.

2. Nonconvex conjugatiofirlores-Bazan [8])

Let X be a metric space. Létdenote the set of all real-valued continuous functions
defined onX. In this setting we have

PROPOSITION4.Let f: X — R U {4o00}. Thenf is lower semicontinuous fif,
and only if, condition(A) holds.

Proof. If (A) is satisfied, then from Propositions 2 and 1(iii) it follows that
f(x) = sup?(x) |9 € ®, ¥ < f}. Hencef, as a supremum of continuous
functions, is lower semicontinuous.

Conversely, letf be lower semicontinuous. Lat € X anda € R such that
a < f(x).Define a functiory asg(x) := —oo for x # x andg(x) := «. Theng is
upper semicontinuous ard< f. From Hahn's result, quoted in the introduction,
we obtainc € € such thatf (x) — c(x) > 0> o — ¢(x) for all x € X. Hence (A)
is satisfied. O

In this situation, if f is lower semicontinuous, thefy f (x) # ¢ for all x € X
with f(x) € R.
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5. Global optimization

Here, using hypothesis (A), we obtain a condition for global optimality in certain
nonconvex minimization problems. Compare also [10, Theorem 4.4, 12, 17].

THEOREM 2. Leth: X — R U {400} satisfy hypothesi§A), let g: X — R
be arbitrary, and letyy = g — h.* Letxo € X be such that(xg) € R. Thenxg
minimizesy on X if, and only if,

dch(xo) € 0:8(x0) Ve >0. 1)

Proof. If xg minimizesyr, theng(x) — h(x) > g(xo) — h(xp) forall x € X. Let
¢ > 0andc € 0,h(xg). Then—c(x) > —h(x) + h(xg) — c(xg) — ¢ forall x € X,
thus

g(x) —c(x) > g(x) — h(x) + h(xo) — c(x0) — & > g(xp) — c(xg) — &

forall x € X, soc € 3,g(xp).
Now assume that (1) holds true. ete X be arbitrary andr € R such that
a < h(x). From hypothesis (A) there exists= € such that

hx) —c(x) >a—c(x) VxelX. 2)

Lete := h(xg) — c(xg) — a + ¢(X). Choosingx = xg in (2) it follows thate > O.
Usinge we can rewrite (2) as

h(x) —c(x) > h(xg) —c(xg) —e Vx e X,
i.e.,c € 3:h(xg). From (1),c € 9, g (xg), thus
g(x) —c(x) = g(xo) — c(x0) — & = g(xo0) — h(xo) +a — c(x),

and thereforg (x) — o > g(xg) — h(xg). Sincea < h(x) was arbitrary, we obtain
g(X) — h(x) = g(xo) — h(xg). Hence xg minimizesy on X. O

6. Duality |

We replace the seX by the producX x Y of two nonempty setX, Y. We assume
that nonempty set8y, Cy of real-valued functions oX, Y, respectively, are given,
and we defing® asthe setofalt = (£, n7): X x Y — R, c(x,y) = £(x) + n(y),
where¢ € Gy, n € Cy.

Let F: X x Y — R satisfy (A). Then

F (&, ) = sup&(x) +n(y) — F(x, y)), (3a)
X,y

* Hereoco — o0 1= 0.
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F(x,y) =supé(x) +n(y) — F*(¢,n). (3b)

&n

We define
f@x) = F(x,y0) —&o(x), f*(n) := F*(&, n) — n(yo),

with fixed elementg, € Cx, yo € Y. We consider the pair of problems

(P)  min{f(x)|x € X},
(D)  min{f*(n)In € Cy}.

The Lagrangian for problem (P) is defined as
L(x;n) = igf(F(x, y) — &o(x) +n(yo) — n(y),
and the Lagrangian for problem (D) is defined as
L*(n; x) = if;f(F*(S, n) — n(yo) + &o(x) — §(x)).
Note that, from (3),

ffm) =sup(—L(x;n)) and f(x) = sup—L"(n; x)) .
X n
THEOREM 3. For everyx € X, n € Cy there holds
f@) + ff(m) = 0. (4)
For everyx € X, 7 € Gy, ¢ > Othere holds

(0,1 € 3 F(X,y0) &= f(X) + f'() < ¢
— (f’ yO) € 88F*(SO’ ﬁ)y

- - f&x)—e=<fx) VxelX,
f(x”f(”)58:{f“<ﬁ)—esf“<n) Vnecy.

Proof. Rewriting f (x) + f*(n) > 0 asF(x, yo) + F*(0, 1) > &o(x) + n(yo),
and f(x) + f*(M) < e asF(x, yo) + F*(§0, 1) < &(X) +n(yo) + &, we see that
(4) and the equivalences are immediate from Theorem 1.

If f(x)+ f*() < ¢ holds, then from (4) it follows that (x) — & < — f* (7)) <
f(x) for everyx, and f*() — e < — f(x) < f*(n) for everyn. ]

The condition(&g, 77) € 0. F (X, yo), i.€.,

F(x,y) —éo(x) = n(y) = F(x, yo) —&(x) —n(yo) —& Vx,y,
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is equivalent with
Lx;n) = f(x) —e Vx.

The latter is thes-Kuhn—Tucker condition for problem (P) atwith multiplier 7.
Similarly, the condition(x, yo) € 9. F*(&o, 1) IS equivalent with

L' %) = ffap —e V.

In the next theorem, hypothesis (A) is not needed for the fundtipbut for the
perturbation functiork: ¥ — R of problem (P), defined as

h(y) == )EQI((F(X’ y) —éo(x)).
We observe that
i) = supo(x) + n(y) — F(x, y)) — n(yo)
X,y
= sup(—h(y) +n(y)) —n(yo) = h*(n) — n(yo).
y
THEOREM 4. Assume that the perturbation functian ¥ — R together with

Cy fulfills hypothesigA). Letx € X be such thatf (x) € Rand f(x) < f(x) for
all x € X. Then for every > 0there existg; € Cy such that

f@+ @) <e

Proof. Since f (x) = inficx f(x) = infrex(F(x, yo) — &0(x)) = h(yo) € R, it
follows from hypothesis (A) for every > 0 that there exist§ € Cy such that

h(y) =n(y) = f(xX) —e —=7(y0) Vye€Y,
hence from the definition df,

F(x,y) —§(x) +1(0) —n(y) = f(x) —e VxeX,yel.
Taking the infimum over alt, y we obtain— f#(77) > f(x) — e. O
EXAMPLE 1. Letp: X - RU{+oc}andT: X — Y. Set

px), ifT(x) =y,

Fx,y) = { +oo else.

Then f(x) = p(x) — &) if T(x) = y, and f(x) = +oo otherwise. Hence
problem (P) takes the form

(P)  minfp(x) — &) |x € X, T(x) = yo},
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and the Lagrangian for (f becomes
L(x;n) = ir;f(F(x, y) — §o(x) +n(yo) — n(y))

= @) = &o(x) + n(yo) — n(T (x)).

7. Duality Il

Here the underlying space is the productXet X, whereX is a real vector space.
Let Cx be a nonempty set of real-valued functionsXsuch that (0) = 0 for all
& € Cx. We defineC as the set of alt = (§,71): X x X — R which are of the
forme(x, y) =&(x —y) + (& —n)(y) with &, n € Cx.

Let F: X x X — R satisfy (A) with respect t&®. Then

F*(&,n) =supé(x —y) + (& —ny) — F(x,y)), (5a)
X,y
F(x,y) =S$Up(§(x—y)+(§ — () — F*(&,n). (5b)
N
We define

f) = Fx,x), f'(n) = F*(n,n).
We consider the pair of problems
(P)  min(f(x)|x € X},
(B)  min{f*(n) [n € Cx}.
As Lagrangian functions for problems (P), (D) we choose

L(x,y;n) = F(x,y) —n(x —y),
L*(&,m; x) := F*(&,n) — (6§ =) (x),
respectively. From (5) follows™(n) = sup, ,(—L(x, y; ) and f(x) = sup,
(—L*(&, n; x)).
THEOREM 5. For everyx € X, n € Cy, there holds
f&)+ f*(m) = 0.
For everyx € X, 7 € Cx, ¢ > 0, there holds

.M € FX,X) < fO)+ () e & X,X) € dF"(,7),

f&x)—e< f(x) VxelX,
fO+ ) <e = i .
ffm) —e < ff(m) Vn e Cx.
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Proof. We proceed as in the proof of Theorem 3. O

The condition(n, ) € 3, F(x, X), i.e.,
Fx,y) =nx—y) = F&x,X)—n0) —¢ Vx,y,
is equivalent with
Lx,y;m=f&x)—e Vx,y.
Likewise the conditior(x, x) € 9, F*(7, 17) is equivalent with
L*GE, mX) = ff\) —e V&

To obtain an analog of Theorem 4 we have to assume that the perturbation function
of (P), namely

h(z) :=Inf{F(x,y)|[x —y=2z} (ze€X),

satisfies hypothesis (A) with respect@®g. Letx € X be such thaif (x) € R and
f(x) < f(x) forall x € X. Then for every > 0 there existg € Cx such that

f@+ @) e

Indeed: f(x) = inf,ex f(x) = INf{F(x,y)|x —y = 0} = h(0) € R. From
hypothesis (A) for every > 0 there existd € Cx such that

h(z) =1(z) = h(0) —e —70) = f(X) —¢ VzeX,
hence from the definition df,
Flx,y)-nx—y) = fxX) —e Vx,yeX.
Taking the infimum over alt, y we obtain— /*(7) > f(x) — &. O

EXAMPLE 2. LetX be atopological vector space aid := X*. LetF(x, y) :=
h(x) +g(y). ThenF*(&, n) = sup, ,(§(x) —n(y) — F(x,y)) = h*(E) + g*(=n),
whereh*, g* are the Fenchel conjugatesofg. Thusf (x) = h(x)+g(x), f*(n) =
h*(n) + g*(—n). One obtains the dual pair introduced by Fenchel. Compare [3],
Chapter |, for further detalils.
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