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Abstract. We study conjugate duality with arbitrary coupling functions. Our only tool is a certain
support property, which is automatically fulfilled in the two most widely used special cases, namely
the case where the underlying space is a topological vector space and the coupling functions are the
continuous linear ones, and the case where the underlying space is a metric space and the coupling
functions are the continuous ones. We obtain thereby a simultaneous axiomatic extension of these
two classical models. Also included is a condition for global optimality, which requires only the
mentioned support property.
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1. Introduction

Fenchel’s theory of conjugate convex functions is a classical source of duality
in nonlinear optimization [7, 14, 15]. In Fenchel’s setting, the conjugatef ∗ of a
functionf ∈ A is defined as

f ∗(c) := sup
x∈X
(c(x)− f (x)) ∀ c ∈ C.

HereX is a locally convex topological vector space,A is the family of all functions
f : X → R ∪ {+∞} which are proper, convex, and lower semicontinuous, andC
is the family of all functionsc : X → R which are linear and continuous. We call
this setting ‘case A’.

It was soon realized [11] that part of Fenchel’s results remains valid in a more
general setting. Of particular interest is the case whereX is a metric space,A is
the family of all functionsf : X → R ∪ {+∞} which are lower semicontinuous,
andC is the family of all functionsc : X→ R which are continuous [1, 4, 13]. We
call this situation ‘case B’.

Until recently, in studying conjugate duality for case B, it was customary to use
some ad hoc assumptions, not needed for case A, for instance the assumption that
f ∈ A is bounded from below onX by somec ∈ C. This assumption is not needed
for case B, as follows from a classical result of Hahn [9]. To our knowledge, it was
Flores-Bazán [8] who for the first time was able to treat case B without such ad
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hoc assumptions, mainly by reproving Hahn’s result [8, Lemma 2.9]. Hahn’s result
states the following:

If X is a metric space,f : X → R ∪ {+∞} is lower semicontinuous,g : X →
R ∪ {−∞} is upper semicontinuous, andg(x) ≤ f (x) for all x ∈ X, then there
exists a continuousc : X→ R such thatg(x) ≤ c(x) ≤ f (x) for all x ∈ X.

A self-contained proof can be found in [16, pp. 132–134]; for possible exten-
sions see [2, 6, p. 61].

In what follows our only structural requirement will be a certain support prop-
erty which is automatically fulfilled in case A as well as in case B, its validity in
case B being a straightforward consequence of Hahn’s result. This support property
is formulated as hypothesis (A) in Section 3 below. We discuss some results of
conjugation, global optimality, and duality, which need only this hypothesis, hence
are valid simultaneously in both settings. In this way we obtain a joint axiomatic
extension of cases A and B.

2. Preliminaries

LetX be a nonempty set. LetC be a nonempty family of real-valued functions de-
fined onX. For any functionf : X→ R andε ≥ 0 we define theε-subdifferential
of f atx ∈ X as

∂εf (x) := {c ∈ C | f (x)− c(x) ≥ f (x)− c(x)− ε ∀ x ∈ X}.
For any functionh : C → R and ε ≥ 0 we define theε-subdifferential ofh at
c ∈ C as

∂εh(c) := {x ∈ X |h(c)− c(x) ≥ h(c)− c(x)− ε ∀ c ∈ C}.
For anyf : X → R theconjugatef ∗ : C → R and thebiconjugatef ∗∗ : X → R

are defined as

f ∗(c) := sup
x∈X
(c(x)− f (x)), f ∗∗(x) := sup

c∈C
(c(x)− f ∗(c)).

We list some properties of the conjugate and biconjugate (see also [11]).

PROPOSITION 1.Letf : X→ R be given. The following properties hold:
(i) for everyg : X→ R , f ≤ g H⇒ f ∗ ≥ g∗ H⇒ f ∗∗ ≤ g∗∗;
f 6≡ +∞ H⇒ f ∗(c) 6= −∞ ∀ c ∈ C;

(ii) f ∗∗ ≤ f ;
(iii) for every x ∈ X, f ∗∗(x) = sup{ϑ(x) |ϑ ∈ 2, ϑ ≤ f },? where2 :=
{ϑ : X→ R |ϑ = c + r, c ∈ C, r ∈ R};

(iv) for everyx ∈ X andc ∈ C, f (x)+ f ∗(c) ≥ c(x);??
? Here sup∅ := −∞.
?? For reasons of symmetry, givena, b ∈ R, r ∈ R, we writea + b ≥ r iff a ≥ r − b. The

analogous convention applies toa + b ≤ r.
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(v) for everyx ∈ X, c ∈ C, ε ≥ 0, there holds

c ∈ ∂εf (x) ⇐⇒ f (x)+ f ∗(c) ≤ c(x)+ ε H⇒ x ∈ ∂εf ∗(c),
and iff (x) = f ∗∗(x), then

f (x)+ f ∗(c) ≤ c(x)+ ε ⇐⇒ x ∈ ∂εf ∗(c);
(vi) for everyx ∈ X and ε ≥ 0, there holds∂εf (x) ⊆ ∂εf

∗∗(x), and if f (x) =
f ∗∗(x), then∂εf (x) = ∂εf ∗∗(x);

(vii) for everyx ∈ X, if ∂εf (x) 6= ∅ for all ε > 0, thenf (x) = f ∗∗(x);
(viii) f ∗∗∗ = f ∗.

Proof.
(i) is obvious.

(ii) Let x ∈ X. Thenc(x)− f ∗(c) ≤ f (x) for all c ∈ C, thusf ∗∗(x) ≤ f (x).
(iii) Let x ∈ X ands := sup{ϑ(x) |ϑ ∈ 2, ϑ ≤ f }.

First we prove thatf ∗∗(x) ≤ s, i.e.,c(x) − f ∗(c) ≤ s for everyc ∈ C. This
is true if f ∗(c) = +∞. If f ∗(c) ∈ R, let ϑ := c − f ∗(c). Thenϑ ∈ 2 and,
from the definition off ∗, ϑ = c − f ∗(c) ≤ f . Thusc(x) − f ∗(c) ≤ s. If
f ∗(c) = −∞, thenf ≡ +∞ and therefores = +∞.
Next we prove thatf ∗∗(x) ≥ s. From the definition ofs, for every realα < s

there existsϑ ≤ f such thatα < ϑ(x) andϑ = c+ r with c ∈ C, r ∈ R. Then
c− f ≤ −r, thusf ∗(c) ≤ −r, and thereforeα < c(x)+ r ≤ c(x)− f ∗(c) ≤
f ∗∗(x).

(iv) Let c ∈ C. From the definition,f ∗(c) ≥ c(x)− f (x) for everyx ∈ X.
(v) c ∈ ∂εf (x) is equivalent withc(x)−f (x) ≤ c(x)+ε−f (x) for everyx ∈ X,

i.e.,f ∗(c) ≤ c(x)+ ε − f (x).
If f (x) ≤ c(x)+ ε− f ∗(c) holds, thenf ∗(c)− c(x) ≥ c(x)− f (x)− c(x) =
−f (x) ≥ f ∗(c)− c(x)− ε for everyc ∈ C, thusx ∈ ∂εf ∗(c).
If f (x) = f ∗∗(x) andx ∈ ∂εf ∗(c), thenc(x)− f ∗(c) ≤ c(x)+ ε− f ∗(c) for
everyc ∈ C, hencef (x) = f ∗∗(x) ≤ c(x)+ ε − f ∗(c).

(vi) Let c ∈ ∂εf (x). From (ii) and (v),f ∗∗(x) ≤ f (x) ≤ c(x)+ ε − f ∗(c) holds.
Thusf ∗∗(x) − c(x) ≥ c(x) − f ∗(c)− c(x) = −f ∗(c) ≥ f ∗∗(x)− c(x) − ε
for everyx ∈ X, and thereforec ∈ ∂εf ∗∗(x).
If f (x) = f ∗∗(x) andc ∈ ∂εf ∗∗(x), then from (ii) followsc ∈ ∂εf (x).

(vii) Let ε > 0 and choosec ∈ ∂εf (x). From (v),f (x) ≤ c(x) − f ∗(c) + ε ≤
f ∗∗(x)+ ε. Sinceε was arbitrary,f (x) ≤ f ∗∗(x) follows.

(viii) From (ii) and (i) we obtainf ∗∗∗ ≥ f ∗. Letc ∈ C. Thenc(x)−f ∗∗(x) ≤ f ∗(c)
for all x ∈ X, thusf ∗∗∗(c) ≤ f ∗(c). 2
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3. The basic hypothesis

To proceed further, letX andC be as before. Our only structural tool will be the
following hypothesis (A), which we require to be satisfied for a given function
f : X→ R :

(A) For everyx ∈ X and everyα ∈ R with α < f (x) there existsc ∈ C such that
f (x)− c(x) ≥ α − c(x) for all x ∈ X.

We note some simple consequences: Iff 6≡ −∞, then hypothesis (A) implies in
particular thatf (x) > −∞ for all x ∈ X andf ∗ 6≡ +∞. Indeed, if we choose
α < f (x), then from (A) there existsc ∈ C such thatc(x) − f (x) ≤ c(x)− α for
all x ∈ X, thusf ∗(c) ≤ c(x)−α < +∞. Moreover, iff (x) ∈ R, then (A) implies
∂εf (x) 6= ∅ for all ε > 0; simply chooseα := f (x)− ε in (A). However, (A) does
not imply ∂0f (x) 6= ∅.
PROPOSITION 2.For anyf : X→ R the validity of hypothesis(A) is equivalent
to f = f ∗∗.

Proof. Let (A) hold for f . From Proposition 1(ii) we know thatf ∗∗ ≤ f . To
provef (x) ≤ f ∗∗(x) for arbitraryx ∈ X, let α ∈ R, α < f (x). Then there exists
c ∈ C such that

c(x)− α ≥ c(x)− f (x) ∀ x ∈ X,
which impliesc(x)− α ≥ f ∗(c), and thereforef ∗∗(x) ≥ c(x)− f ∗(c) ≥ α.

Conversely, iff ∗∗ = f , then (A) is satisfied. In fact, letα < f (x) = f ∗∗(x).
Then there existsc ∈ C such thatα ≤ c(x) − f ∗(c) ≤ c(x) − (c(x) − f (x)) for
all x ∈ X. 2

Once it is granted thatf = f ∗∗, the biconjugate is not needed any more for our
purposes. We collect the relevant results as follows.

THEOREM 1. Letf : X→ R satisfy(A), and let

f ∗(c) := sup
x∈X
(c(x)− f (x)) ∀ c ∈ C.

Then for everyx ∈ X, c ∈ C, ε ≥ 0,

f (x)+ f ∗(c) ≥ c(x),
c ∈ ∂εf (x) ⇐⇒ f (x)+ f ∗(c) ≤ c(x) + ε ⇐⇒ x ∈ ∂εf ∗(c),
f (x) = sup

c∈C
(c(x)− f ∗(c)).

Proof.This follows from Proposition 1(iv), (v), and Proposition 2. 2
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4. Examples

Let us quote two examples for hypothesis (A).

1. Convex conjugation(Fenchel, Moreau, Rockafellar)

LetX be a locally convex topological vector space. LetX∗ denote the topological
dual ofX, i.e., the space of all continuous linear functionals defined onX. We
denote the value ofξ ∈ X∗ atx ∈ X by 〈ξ, x〉 instead ofξ(x). LetC := X∗. In this
setting we have

PROPOSITION 3. Let f : X → R ∪ {+∞} be proper (i.e.,6≡ +∞). Thenf is
convex and lower semicontinuous if, and only if, condition(A) holds.

Proof. If (A) holds, then from Propositions 2 and 1(iii) it follows thatf (x) =
sup{ϑ(x) |ϑ ∈ 2, ϑ ≤ f }. Thusf , being the supremum of a family of continuous
affine functions, is lower semicontinuous and convex.

Conversely, letf be proper, convex, and lower semicontinuous. Letx ∈ X and
α ∈ R, α < f (x). Then(x, α) /∈ epif := {(x, r) ∈ X × R | f (x) ≤ r}. Then (see
[5, pp. 14/15]) there exists a nonvertical hyperplane which separates(x, α) from the
closed, convex set epif . So there existsξ ∈ X∗ such that〈ξ, x〉−f (x) ≤ 〈ξ, x〉−α
for all x ∈ X. Hence (A) holds. 2

f ∗ becomes in this case the Fenchel conjugate off . If f is proper, convex, and
lower semicontinuous, thenf ∗ is proper, convex, and weak∗ lower semicontinuous.
Compare [3, Chapter I]. Moreover, iff (x) ∈ R, then∂εf (x) 6= ∅ for all ε > 0.
But ∂0f (x) may be empty.

2. Nonconvex conjugation(Flores-Bazán [8])

LetX be a metric space. LetC denote the set of all real-valued continuous functions
defined onX. In this setting we have

PROPOSITION 4. Let f : X → R ∪ {+∞}. Thenf is lower semicontinuous if,
and only if, condition(A) holds.

Proof. If (A) is satisfied, then from Propositions 2 and 1(iii) it follows that
f (x) = sup{ϑ(x) |ϑ ∈ 2, ϑ ≤ f }. Hencef , as a supremum of continuous
functions, is lower semicontinuous.

Conversely, letf be lower semicontinuous. Letx ∈ X andα ∈ R such that
α ≤ f (x). Define a functiong asg(x) := −∞ for x 6= x andg(x) := α. Theng is
upper semicontinuous andg ≤ f . From Hahn’s result, quoted in the introduction,
we obtainc ∈ C such thatf (x) − c(x) ≥ 0 ≥ α − c(x) for all x ∈ X. Hence (A)
is satisfied. 2

In this situation, iff is lower semicontinuous, then∂0f (x) 6= ∅ for all x ∈ X
with f (x) ∈ R.
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5. Global optimization

Here, using hypothesis (A), we obtain a condition for global optimality in certain
nonconvex minimization problems. Compare also [10, Theorem 4.4, 12, 17].

THEOREM 2. Let h : X → R ∪ {+∞} satisfy hypothesis(A), let g : X → R

be arbitrary, and letψ = g − h.? Let x0 ∈ X be such thath(x0) ∈ R. Thenx0

minimizesψ onX if, and only if,

∂εh(x0) ⊆ ∂εg(x0) ∀ ε ≥ 0. (1)

Proof. If x0 minimizesψ , theng(x)− h(x) ≥ g(x0)− h(x0) for all x ∈ X. Let
ε ≥ 0 andc ∈ ∂εh(x0). Then−c(x) ≥ −h(x)+ h(x0) − c(x0) − ε for all x ∈ X,
thus

g(x)− c(x) ≥ g(x)− h(x)+ h(x0)− c(x0)− ε ≥ g(x0)− c(x0)− ε
for all x ∈ X, soc ∈ ∂εg(x0).

Now assume that (1) holds true. Letx ∈ X be arbitrary andα ∈ R such that
α < h(x). From hypothesis (A) there existsc ∈ C such that

h(x)− c(x) ≥ α − c(x) ∀ x ∈ X. (2)

Let ε := h(x0)− c(x0)− α + c(x). Choosingx = x0 in (2) it follows thatε ≥ 0.
Usingε we can rewrite (2) as

h(x)− c(x) ≥ h(x0)− c(x0)− ε ∀ x ∈ X,
i.e.,c ∈ ∂εh(x0). From (1),c ∈ ∂εg(x0), thus

g(x)− c(x) ≥ g(x0)− c(x0)− ε = g(x0)− h(x0)+ α − c(x),
and thereforeg(x)− α ≥ g(x0)− h(x0). Sinceα < h(x) was arbitrary, we obtain
g(x)− h(x) ≥ g(x0)− h(x0). Hence,x0 minimizesψ onX. 2

6. Duality I

We replace the setX by the productX×Y of two nonempty setsX, Y . We assume
that nonempty setsCX, CY of real-valued functions onX,Y , respectively, are given,
and we defineC as the set of allc = (ξ, η) : X × Y → R, c(x, y) = ξ(x)+ η(y),
whereξ ∈ CX, η ∈ CY .

Let F : X × Y → R satisfy (A). Then

F ∗(ξ, η) = sup
x,y

(ξ(x)+ η(y)− F(x, y)), (3a)

? Here∞−∞ := ∞.
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F(x, y) = sup
ξ,η

(ξ(x) + η(y)− F ∗(ξ, η)). (3b)

We define

f (x) := F(x, y0)− ξ0(x), f #(η) := F ∗(ξ0, η)− η(y0),

with fixed elementsξ0 ∈ CX, y0 ∈ Y . We consider the pair of problems

(P) min{f (x) | x ∈ X},
(D) min{f #(η) | η ∈ CY }.

The Lagrangian for problem (P) is defined as

L(x; η) := inf
y
(F (x, y) − ξ0(x)+ η(y0)− η(y)),

and the Lagrangian for problem (D) is defined as

L#(η; x) := inf
ξ
(F ∗(ξ, η)− η(y0)+ ξ0(x)− ξ(x)).

Note that, from (3),

f #(η) = sup
x

(−L(x; η)) and f (x) = sup
η

(−L#(η; x)) .

THEOREM 3. For everyx ∈ X, η ∈ CY there holds

f (x)+ f #(η) ≥ 0. (4)

For everyx ∈ X, η ∈ CY , ε ≥ 0 there holds

(ξ0, η) ∈ ∂εF (x, y0)⇐⇒ f (x)+ f #(η) ≤ ε
⇐⇒ (x, y0) ∈ ∂εF ∗(ξ0, η),

f (x)+ f #(η) ≤ ε H⇒
{
f (x)− ε ≤ f (x) ∀ x ∈ X,
f #(η)− ε ≤ f #(η) ∀ η ∈ CY .

Proof.Rewritingf (x) + f #(η) ≥ 0 asF(x, y0) + F ∗(ξ0, η) ≥ ξ0(x) + η(y0),
andf (x) + f #(η) ≤ ε asF(x, y0) + F ∗(ξ0, η) ≤ ξ0(x) + η(y0) + ε, we see that
(4) and the equivalences are immediate from Theorem 1.

If f (x)+ f #(η) ≤ ε holds, then from (4) it follows thatf (x)− ε ≤ −f #(η) ≤
f (x) for everyx, andf #(η)− ε ≤ −f (x) ≤ f #(η) for everyη. 2

The condition(ξ0, η) ∈ ∂εF (x, y0), i.e.,

F(x, y) − ξ0(x)− η(y) ≥ F(x, y0)− ξ0(x)− η(y0)− ε ∀ x, y,
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is equivalent with

L(x; η) ≥ f (x)− ε ∀ x.
The latter is theε-Kuhn–Tucker condition for problem (P) atx with multiplier η.
Similarly, the condition(x, y0) ∈ ∂εF ∗(ξ0, η) is equivalent with

L#(η; x) ≥ f #(η)− ε ∀ η.
In the next theorem, hypothesis (A) is not needed for the functionF , but for the
perturbation functionh : Y → R of problem (P), defined as

h(y) := inf
x∈X(F(x, y) − ξ0(x)).

We observe that

f #(η) = sup
x,y

(ξ0(x)+ η(y)− F(x, y)) − η(y0)

= sup
y

(−h(y)+ η(y))− η(y0) = h∗(η)− η(y0).

THEOREM 4. Assume that the perturbation functionh : Y → R together with
CY fulfills hypothesis(A). Let x ∈ X be such thatf (x) ∈ R andf (x) ≤ f (x) for
all x ∈ X. Then for everyε > 0 there existsη ∈ CY such that

f (x)+ f #(η) ≤ ε.
Proof.Sincef (x) = infx∈X f (x) = infx∈X(F(x, y0) − ξ0(x)) = h(y0) ∈ R, it

follows from hypothesis (A) for everyε > 0 that there existsη ∈ CY such that

h(y)− η(y) ≥ f (x)− ε − η(y0) ∀ y ∈ Y,
hence from the definition ofh,

F(x, y) − ξ0(x)+ η(y0)− η(y) ≥ f (x)− ε ∀ x ∈ X, y ∈ Y.
Taking the infimum over allx, y we obtain−f #(η) ≥ f (x)− ε. 2

EXAMPLE 1. Letϕ : X→ R ∪ {+∞} andT : X→ Y . Set

F(x, y) :=
{
ϕ(x), if T (x) = y,
+∞ else.

Thenf (x) = ϕ(x) − ξ0(x) if T (x) = y, and f (x) = +∞ otherwise. Hence
problem (P) takes the form

(P′) min{ϕ(x)− ξ0(x) | x ∈ X, T (x) = y0},
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and the Lagrangian for (P′) becomes

L(x; η) = inf
y
(F (x, y) − ξ0(x)+ η(y0)− η(y))

= ϕ(x)− ξ0(x)+ η(y0)− η(T (x)).

7. Duality II

Here the underlying space is the product setX×X, whereX is a real vector space.
Let CX be a nonempty set of real-valued functions onX such thatξ(0) = 0 for all
ξ ∈ CX. We defineC as the set of allc = (ξ, η) : X × X → R which are of the
form c(x, y) = ξ(x − y)+ (ξ − η)(y) with ξ, η ∈ CX.

Let F : X ×X→ R satisfy (A) with respect toC. Then

F ∗(ξ, η) = sup
x,y

(ξ(x − y)+ (ξ − η)(y)− F(x, y)), (5a)

F(x, y) = sup
ξ,η

(ξ(x − y)+ (ξ − η)(y)− F ∗(ξ, η)). (5b)

We define

f (x) := F(x, x), f #(η) := F ∗(η, η).
We consider the pair of problems

(P) min{f (x) | x ∈ X},
(D) min{f #(η) | η ∈ CX}.

As Lagrangian functions for problems (P), (D) we choose

L(x, y; η) := F(x, y) − η(x − y),
L#(ξ, η; x) := F ∗(ξ, η)− (ξ − η)(x),

respectively. From (5) followsf #(η) = supx,y(−L(x, y; η)) andf (x) = supξ,η
(−L#(ξ, η; x)).
THEOREM 5. For everyx ∈ X, η ∈ CX, there holds

f (x)+ f #(η) ≥ 0.

For everyx ∈ X, η ∈ CX, ε ≥ 0, there holds

(η, η) ∈ ∂εF (x, x) ⇐⇒ f (x)+ f #(η) ≤ ε ⇐⇒ (x, x) ∈ ∂εF ∗(η, η),

f (x)+ f #(η) ≤ ε H⇒
{
f (x)− ε ≤ f (x) ∀ x ∈ X,
f #(η)− ε ≤ f #(η) ∀ η ∈ CX.
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Proof.We proceed as in the proof of Theorem 3. 2

The condition(η, η) ∈ ∂εF (x, x), i.e.,

F(x, y) − η(x − y) ≥ F(x, x)− η(0)− ε ∀ x, y,
is equivalent with

L(x, y; η) ≥ f (x)− ε ∀ x, y.
Likewise the condition(x, x) ∈ ∂εF ∗(η, η) is equivalent with

L#(ξ, η; x) ≥ f #(η)− ε ∀ ξ, η.
To obtain an analog of Theorem 4 we have to assume that the perturbation function
of (P), namely

h(z) := inf{F(x, y) | x − y = z} (z ∈ X),
satisfies hypothesis (A) with respect toCX. Let x ∈ X be such thatf (x) ∈ R and
f (x) ≤ f (x) for all x ∈ X. Then for everyε > 0 there existsη ∈ CX such that

f (x)+ f #(η) ≤ ε.
Indeed:f (x) = infx∈X f (x) = inf{F(x, y) | x − y = 0} = h(0) ∈ R. From
hypothesis (A) for everyε > 0 there existsη ∈ CX such that

h(z)− η(z) ≥ h(0)− ε − η(0) = f (x)− ε ∀ z ∈ X,
hence from the definition ofh,

F(x, y) − η(x − y) ≥ f (x)− ε ∀ x, y ∈ X.
Taking the infimum over allx, y we obtain−f #(η) ≥ f (x)− ε. 2

EXAMPLE 2. LetX be a topological vector space andCX := X∗. LetF(x, y) :=
h(x)+ g(y). ThenF ∗(ξ, η) = supx,y(ξ(x)− η(y)− F(x, y)) = h∗(ξ)+ g∗(−η),
whereh∗, g∗ are the Fenchel conjugates ofh, g. Thusf (x) = h(x)+g(x), f #(η) =
h∗(η) + g∗(−η). One obtains the dual pair introduced by Fenchel. Compare [3],
Chapter I, for further details.
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